The Roper-Suffridge extension operator and its applications to convex mappings in ${\mathbb {C}}^{2}$
نویسندگان
چکیده
منابع مشابه
On the generalized Roper-Suffridge extension operator in Banach spaces
The generalized Roper-Suffridge extension operator in Banach spaces is introduced. We prove that this operator preserves the starlikeness on some domains in Banach spaces and does not preserve convexity in some cases. Furthermore, the growth theorem and covering theorem of the corresponding mappings are given. Some results of Roper and Suffridge and Graham et al. in Cn are extended to Banach sp...
متن کاملA New Roper-Suffridge Extension Operator on a Reinhardt Domain
and Applied Analysis 3 In contrast to the modified Roper-Suffridge extension operator in the unit ball, it is natural to ask if we can modify the Roper-Suffridge extension operator on the Reinhardt domains. In this paper, we will introduce the following modified operator: F z ⎛ ⎝f z1 f ′ z1 n ∑ j 2 ajz pj j , ( f ′ z1 2z2, . . . , ( f ′ z1 nzn ⎞ ⎠ ′ 1.5 on the Reinhardt domainΩn,p2,...,pn . Wew...
متن کاملTHE ROPER-SUFFRIDGE EXTENSION OPERATORS ON THE CLASS OF STRONG AND ALMOST SPIRALLIKE MAPPINGS OF TYPE $beta$ AND ORDER $alpha$
Let$mathbb{C}^n$ be the space of $n$ complex variables. Let$Omega_{n,p_2,ldots,p_n}$ be a complete Reinhardt on$mathbb{C}^n$. The Minkowski functional on complete Reinhardt$Omega_{n,p_2,ldots,p_n}$ is denoted by $rho(z)$. The concept ofspirallike mapping of type $beta$ and order $alpha$ is defined.So, the concept of the strong and almost spirallike mappings o...
متن کاملPreclosure operator and its applications in general topology
In this paper, we show that a pointwise symmetric pre-isotonic preclosure function is uniquely determined the pairs of sets it separates. We then show that when the preclosure function of the domain is pre-isotonic and the pre-closure function of the codomain is pre-isotonic and pointwise-pre-symmetric, functions which separate only those pairs of sets which are already separated are precontinu...
متن کاملHermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions
Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2018
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/7221